gluonts.mx.distribution.logit_normal module

class gluonts.mx.distribution.logit_normal.LogitNormal(mu: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], sigma: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol])[source]

Bases: gluonts.mx.distribution.distribution.Distribution

The logit-normal distribution.

Parameters
  • mu – Tensor containing the location, of shape (*batch_shape, *event_shape).

  • sigma – Tensor indicating the scale, of shape (*batch_shape, *event_shape).

  • F

property F
arg_names = None
property args
property batch_shape

Layout of the set of events contemplated by the distribution.

Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape, and computing log_prob (or loss more in general) on such sample will yield a tensor of shape batch_shape.

This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.

property event_dim

Number of event dimensions, i.e., length of the event_shape tuple.

This is 0 for distributions over scalars, 1 over vectors, 2 over matrices, and so on.

property event_shape

Shape of each individual event contemplated by the distribution.

For example, distributions over scalars have event_shape = (), over vectors have event_shape = (d, ) where d is the length of the vectors, over matrices have event_shape = (d1, d2), and so on.

Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape.

This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.

log_prob(x: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) → Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]

Compute the log-density of the distribution at x.

Parameters

x – Tensor of shape (*batch_shape, *event_shape).

Returns

Tensor of shape batch_shape containing the log-density of the distribution for each event in x.

Return type

Tensor

quantile(level: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) → Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]

Calculates quantiles for the given levels.

Parameters

level – Level values to use for computing the quantiles. level should be a 1d tensor of level values between 0 and 1.

Returns

Quantile values corresponding to the levels passed. The return shape is

(num_levels, …DISTRIBUTION_SHAPE…),

where DISTRIBUTION_SHAPE is the shape of the underlying distribution.

Return type

quantiles

sample(num_samples=None, dtype=<class 'numpy.float32'>)[source]

Draw samples from the distribution.

If num_samples is given the first dimension of the output will be num_samples.

Parameters
  • num_samples – Number of samples to to be drawn.

  • dtype – Data-type of the samples.

Returns

A tensor containing samples. This has shape (*batch_shape, *eval_shape) if num_samples = None and (num_samples, *batch_shape, *eval_shape) otherwise.

Return type

Tensor

class gluonts.mx.distribution.logit_normal.LogitNormalOutput[source]

Bases: gluonts.mx.distribution.distribution_output.DistributionOutput

args_dim: Dict[str, int] = {'mu': 1, 'sigma': 1}
distr_cls

alias of LogitNormal

distribution(distr_args, loc=None, scale=None, **kwargs) → gluonts.mx.distribution.distribution.Distribution[source]

Construct the associated distribution, given the collection of constructor arguments and, optionally, a scale tensor.

Parameters
  • distr_args – Constructor arguments for the underlying Distribution type.

  • loc – Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution.

  • scale – Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution.

classmethod domain_map(F, mu, sigma)[source]

Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape.

property event_shape

Shape of each individual event contemplated by the distributions that this object constructs.