Source code for gluonts.model.gpvar._estimator

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

# Standard library imports
from typing import List, Optional

# Third-party imports
from mxnet.gluon import HybridBlock

# First-party imports
from gluonts.distribution import DistributionOutput
from gluonts.distribution.lowrank_gp import LowrankGPOutput
from gluonts.core.component import validated
from gluonts.model.deepvar._estimator import (
    get_lags_for_frequency,
    time_features_from_frequency_str,
)
from gluonts.model.estimator import GluonEstimator
from gluonts.model.predictor import Predictor, RepresentableBlockPredictor
from gluonts.support.util import copy_parameters
from gluonts.time_feature import TimeFeature
from gluonts.trainer import Trainer
from gluonts.transform import (
    AddObservedValuesIndicator,
    AddTimeFeatures,
    AsNumpyArray,
    Chain,
    ExpectedNumInstanceSampler,
    InstanceSplitter,
    SetFieldIfNotPresent,
    Transformation,
    VstackFeatures,
    ExpandDimArray,
    TargetDimIndicator,
    SampleTargetDim,
    CDFtoGaussianTransform,
    RenameFields,
    cdf_to_gaussian_forward_transform,
)

# Relative imports
from gluonts.dataset.field_names import FieldName
from ._network import GPVARPredictionNetwork, GPVARTrainingNetwork


[docs]class GPVAREstimator(GluonEstimator): """ Constructs a GPVAR estimator. These models have been described as GP-Copula in this paper: https://arxiv.org/abs/1910.03002 Note that this implementation will change over time and we further work on this method. To replicate the results of the paper, please refer to our (frozen) implementation here: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release Parameters ---------- freq Frequency of the data to train on and predict prediction_length Length of the prediction horizon target_dim Dimensionality of the input dataset trainer Trainer object to be used (default: Trainer()) context_length Number of steps to unroll the RNN for before computing predictions (default: None, in which case context_length = prediction_length) num_layers Number of RNN layers (default: 2) num_cells Number of RNN cells for each layer (default: 40) cell_type Type of recurrent cells to use (available: 'lstm' or 'gru'; default: 'lstm') num_parallel_samples Number of evaluation samples per time series to increase parallelism during inference. This is a model optimization that does not affect the accuracy (default: 100) dropout_rate Dropout regularization parameter (default: 0.1) target_dim_sample Number of dimensions to sample for the GP model distr_output Distribution to use to evaluate observations and sample predictions (default: LowrankGPOutput with dim=target_dim and rank=5). Note that target dim of the DistributionOutput and the estimator constructor call need to match. Also note that the rank in this constructor is meaningless if the DistributionOutput is constructed outside of this class. rank Rank for the LowrankGPOutput. (default: 2) scaling Whether to automatically scale the target values (default: true) pick_incomplete Whether training examples can be sampled with only a part of past_length time-units lags_seq Indices of the lagged target values to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq) shuffle_target_dim Shuffle the dimensions before sampling. time_features Time features to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq) conditioning_length Set maximum length for conditioning the marginal transformation use_marginal_transformation Whether marginal (CDFtoGaussianTransform) transformation is used by the model """ @validated() def __init__( self, freq: str, prediction_length: int, target_dim: int, trainer: Trainer = Trainer(), # number of dimension to sample at training time context_length: Optional[int] = None, num_layers: int = 2, num_cells: int = 40, cell_type: str = "lstm", num_parallel_samples: int = 100, dropout_rate: float = 0.1, target_dim_sample: Optional[int] = None, distr_output: Optional[DistributionOutput] = None, rank: Optional[int] = 2, scaling: bool = True, pick_incomplete: bool = False, lags_seq: Optional[List[int]] = None, shuffle_target_dim: bool = True, time_features: Optional[List[TimeFeature]] = None, conditioning_length: int = 100, use_marginal_transformation: bool = False, ) -> None: super().__init__(trainer=trainer) assert ( prediction_length > 0 ), "The value of `prediction_length` should be > 0" assert ( context_length is None or context_length > 0 ), "The value of `context_length` should be > 0" assert num_layers > 0, "The value of `num_layers` should be > 0" assert num_cells > 0, "The value of `num_cells` should be > 0" assert ( num_parallel_samples > 0 ), "The value of `num_eval_samples` should be > 0" assert dropout_rate >= 0, "The value of `dropout_rate` should be >= 0" if distr_output is not None: self.distr_output = distr_output else: self.distr_output = LowrankGPOutput(rank=rank) self.freq = freq self.context_length = ( context_length if context_length is not None else prediction_length ) self.prediction_length = prediction_length self.target_dim = target_dim self.target_dim_sample = ( target_dim if target_dim_sample is None else min(target_dim_sample, target_dim) ) self.shuffle_target_dim = shuffle_target_dim self.num_layers = num_layers self.num_cells = num_cells self.cell_type = cell_type self.num_parallel_samples = num_parallel_samples self.dropout_rate = dropout_rate self.lags_seq = ( lags_seq if lags_seq is not None else get_lags_for_frequency(freq_str=freq) ) self.time_features = ( time_features if time_features is not None else time_features_from_frequency_str(self.freq) ) self.history_length = self.context_length + max(self.lags_seq) self.pick_incomplete = pick_incomplete self.scaling = scaling self.conditioning_length = conditioning_length self.use_marginal_transformation = use_marginal_transformation if self.use_marginal_transformation: self.output_transform = cdf_to_gaussian_forward_transform else: self.output_transform = None
[docs] def create_transformation(self) -> Transformation: def use_marginal_transformation( marginal_transformation: bool, ) -> Transformation: if marginal_transformation: return CDFtoGaussianTransform( target_field=FieldName.TARGET, observed_values_field=FieldName.OBSERVED_VALUES, max_context_length=self.conditioning_length, target_dim=self.target_dim, ) else: return RenameFields( { f"past_{FieldName.TARGET}": f"past_{FieldName.TARGET}_cdf", f"future_{FieldName.TARGET}": f"future_{FieldName.TARGET}_cdf", } ) return Chain( [ AsNumpyArray( field=FieldName.TARGET, expected_ndim=1 + len(self.distr_output.event_shape), ), # maps the target to (1, T) if the target data is uni # dimensional ExpandDimArray( field=FieldName.TARGET, axis=0 if self.distr_output.event_shape[0] == 1 else None, ), AddObservedValuesIndicator( target_field=FieldName.TARGET, output_field=FieldName.OBSERVED_VALUES, ), AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field=FieldName.FEAT_TIME, time_features=self.time_features, pred_length=self.prediction_length, ), VstackFeatures( output_field=FieldName.FEAT_TIME, input_fields=[FieldName.FEAT_TIME], ), SetFieldIfNotPresent( field=FieldName.FEAT_STATIC_CAT, value=[0.0] ), TargetDimIndicator( field_name=FieldName.TARGET_DIM_INDICATOR, target_field=FieldName.TARGET, ), AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1), InstanceSplitter( target_field=FieldName.TARGET, is_pad_field=FieldName.IS_PAD, start_field=FieldName.START, forecast_start_field=FieldName.FORECAST_START, train_sampler=ExpectedNumInstanceSampler(num_instances=1), past_length=self.history_length, future_length=self.prediction_length, time_series_fields=[ FieldName.FEAT_TIME, FieldName.OBSERVED_VALUES, ], pick_incomplete=self.pick_incomplete, ), use_marginal_transformation(self.use_marginal_transformation), SampleTargetDim( field_name=FieldName.TARGET_DIM_INDICATOR, target_field=FieldName.TARGET + "_cdf", observed_values_field=FieldName.OBSERVED_VALUES, num_samples=self.target_dim_sample, shuffle=self.shuffle_target_dim, ), ] )
[docs] def create_training_network(self) -> GPVARTrainingNetwork: return GPVARTrainingNetwork( target_dim=self.target_dim, target_dim_sample=self.target_dim_sample, num_layers=self.num_layers, num_cells=self.num_cells, cell_type=self.cell_type, history_length=self.history_length, context_length=self.context_length, prediction_length=self.prediction_length, dropout_rate=self.dropout_rate, lags_seq=self.lags_seq, scaling=self.scaling, distr_output=self.distr_output, conditioning_length=self.conditioning_length, )
[docs] def create_predictor( self, transformation: Transformation, trained_network: HybridBlock ) -> Predictor: prediction_network = GPVARPredictionNetwork( target_dim=self.target_dim, target_dim_sample=self.target_dim, num_parallel_samples=self.num_parallel_samples, num_layers=self.num_layers, num_cells=self.num_cells, cell_type=self.cell_type, history_length=self.history_length, context_length=self.context_length, prediction_length=self.prediction_length, dropout_rate=self.dropout_rate, lags_seq=self.lags_seq, scaling=self.scaling, distr_output=self.distr_output, conditioning_length=self.conditioning_length, ) copy_parameters(trained_network, prediction_network) return RepresentableBlockPredictor( input_transform=transformation, prediction_net=prediction_network, batch_size=self.trainer.batch_size, freq=self.freq, prediction_length=self.prediction_length, ctx=self.trainer.ctx, output_transform=self.output_transform, )